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A detailed discussion of a type of four-component superposition of displaced Fock
states (DFSs) is presented. A generation scheme is proposed for these states. The
s-parameterized characteristic function (CF) and the quasiprobability distribution func-
tions (QDFs) of these states are calculated. The nonclassical properties of these states
such as photon number distribution and squeezing are discussed. The quadrature distri-
butions are illustrated. The Pegg—Barnett phase distribution is discussed.

1. INTRODUCTION

The concept of the photon in the quantum theory of a radiation field has
been built on the Fock (number) stat®. However, the coherent state is an-
other important state; it may be defined by the action of a displacement operator
D(«) on the vacuum state. These states have been extensively studied (Glauber,
1963; Perina, 1984; Walls and Milburn, 1994). On the other hand, the displaced
Fock states (DFSs) are very important kinds of states in quantum optics, defined
by the action of the displacement operator on the number state (Abd Al-Kader,
1994; Agarwal and Tara, 1991; Boiteux and Levelut, 1973; De Oliveiral,,

1990; Moya-Cessa and Knight, 1993; Roy and Singh, 1982; Satyanarayana, 1985;
Wunsche, 1991). They can be regarded as a generalized class of the Fock and coher-
ent states. They form a complete basis, and have interesting and unusual physical
properties (Abd Al-Kader, 1994; Agarwal and Tara, 1991; Boiteux and Levelut,
1973; De Oliveiraet al, 1990; Moya-Cessa and Knight, 1993; Roy and Singh,
1982; Satyanarayana, 1985; Wunsche, 1991). The quasiprobability distribution
functions (QDFs) have been represented as a series in terms of these states (Abd
Al-Kader, 1994; Agarwal and Tara, 1991; De Olive&tal, 1990; Moya-Cessa
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and Knight, 1993; Wunsche, 1991). Experiments have been performed to prepare
the Fock states, coherent states, and states derived from them, in recent years (de
Matos Filho and Vogel, 1996; Gardinetal., 1997; Itancet al,, 1997; Kneer and

Law, 1998; Law and Eberly, 1996; Monr@e al, 1996; Steinbaclet al., 1997;

Vogel and de Matos Filho, 1995; Winelaatal.,, 1998). The various schemes pro-
posed have been built on the motional dynamics of the centre of mass of trapped
ions (Abd Al-Kader, 1999; Obada and Abd Al-Kader, 1998, 1999; Schleich and
Raymer, 1997).

Recently, a considerable effort has been devoted to a description of the non-
classical properties of superpositions of quantum states of light (Abd Al-Kader,
1999; Abdalleet al, 1994; Ban, 1995; Boset al,, 1997; Buzelet al,, 1992; Dakna
etal, 1997, 1998; Dodonogt al,, 1996, 1998; Garrawast al., 1994, 1995; Gou
et al, 1997; Hach and Gerry, 1992, 1993; Leteal, 1993; Mogilevtsev and Ya,
1996; Moya-Cessa, 1995; Obada and Abd Al-Kader, 1998, 1999; Obada and Omar,
1995, 1997; Schleich and Raymer, 1997; Yurke and Stoler, 1986; Zheng and Guo,
1996). Squeezing is one of many nonclassical properties that originate from the
quantum interference between the component states of the superposition states.
In addition, there has been much interest in the properties and in the generation
of the various superposition states of light (Abd Al-Kader, 1999; Abdetlal.,

1994; Ban, 1995; Boset al,, 1997; Buzelet al,, 1992; Daknaet al., 1997, 1998;
Dodonowetal, 1996, 1998; Garrawagt al., 1994, 1995; Goatal, 1997; Hach and
Gerry, 1992, 1993; Leet al, 1993; Mogilevtsev and Ya, 1996; Moya-Cessa, 1995;
Obada and Abd Al-Kader, 1998, 1999; Obada and Omar, 1995, 1997; Schleich and
Raymer, 1997; Yurke and Stoler, 1986; Zheng and Guo, 1996)o8ictyer cat
states are quantum superpositions of macroscopically distinguishable states, they
can be produced in quantum optical experiments (Abd Al-Kader, 1999; Obada
and Abd Al-Kader, 1998, 1999; Schleich and Raymer, 1997). Since the first pro-
posal made by Yurke and Stoler (1986), a lot of interest has been paid to the idea
of using nonlinear wave-mixing processes for the generation of multicomponent
entangled Scladinger cat states of an electromagnetic field (Ban, 1995; Buzek
et al, 1992; Garrawat al, 1994, 1995; Yurke and Stoler, 1986). Creation of
the superposition states by applying a sequence of laser pulses, which entangle
internal (electronic) and external (motional) states of the ion, have been reported
in Schleich and Raymer (1997), Obada and Abd Al-Kader (1998, 1999), and Abd
Al-Kader (1999). They showed that by choosing appropriate interaction durations,
a coherent input state can be transformed into a superposition state of two or four
coherent component states located on a circle (Bbag, 1997; Hach and Gerry,
1992; Leeet al, 1993; Mogilevtsev and Ya, 1996). These fundamental researches
not only lead us to a deeper understanding of the nature of light, but also have
applications in the quantum communications and in detection of weak signals.

The characteristic function (CF) plays the central role in the fundamental
exposition of the quasiprobability distribution functions (QDFs). It is defined as
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the trace of the product of the density operator with the displacement operator
(Hillery etal, 1984, and references therein; Lee, 1995). Different orders of product
of creation and annihilation average values have been obtained by these functions.
Also photon number distributions and various moments can be generated from
this function (Cabhill and Glauber, 1969; Hilleeg al., 1984; Lee, 1995; Wtische,
1998).

Recently Barnettand Pegg (1986, 1989a,b) introduced a new Hermitian phase
formalism that successfully overcomes the troubles inherent in the Susskind—
Glogower (Carruthers and Nieto, 1968; Jackiw, 1968; Loudon, 1973; Susskind
and Glogower, 1964) phase formalism and enables one to study finer details of
the phase properties of quantum fields. Such quantities as expectation values and
variances of the Hermitian phase operators or phase distribution functions are now
available for investigations (“Quantum phase and phase dependent measurements,”
1993; Lynch, 1995; Perinowt al., 1998). One of our interests is to investigate the
phase properties here.

In a previous paper we have considered the superposition of a pair of DFSs
(Abd Al-Kader, 1999; Obada and Abd Al-Kader, 1998, 1999). These exhibit os-
cillations in the photon number distributions and other nonclassical properties,
such as squeezing or sub-Poissonian photon statistics. A generation scheme for
these states is presented by using the quantized motional degrees of freedom of
a trapped ion. In this contribution we study the statistical properties of a multi-
component DFS. To investigate the statistical properties of these multicomponent
states, we evaluate the correspondimgarameterized characteristic function (CF)
ands-parameterized quasiprobability function (QDF).

In Sectim 2 a generation scheme for the so-called four-component super-
position displaced Fock states (DFSs) is considered. In Section 3 we introduce
the CF for the four component DFSs. In Section 4 the nonclassical properties are
discussed, such as photon number distribution, correlation function, squeezing,
phase distribution, quadrature distribution, and quasiprobability function. Finally
we draw some conclusions.

2. GENERATION SCHEME OF A FOUR-COMPONENT
SUPERPOSITION OF DFSs

Recent advances in the laser cooling and trapping of ions have made possi-
ble a realization of the Jaynes—Cummings model (Shore and Knight, 1993, and
references therein), for which the usual single mode quantized electromagnetic
field is replaced by the quantized vibrational motion of the ion’s center of mass,
which is coupled to two internal states of the ion by a classical driving laser field.
In addition, it has become possible to generate a variety of motional states for the
ion. These include thermal, Fock (number), and coherent (Schleich and Raymer,
1997), where the displaced Fock (number) and coherent states have distinctly
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nonclassical properties. The most general states of the pervious—the DFSs—have
also been discussed in the context of trapped ions (Abd Al-Kader, 1999; Abdalla
et al, 1994; Ban, 1995; Boset al,, 1997; Buzelet al, 1992; Daknaet al., 1997,

1998; Dodonoet al, 1996, 1998; Garrawagt al, 1994, 1995; Goet al,, 1997,

Hach and Gerry, 1992, 1993; Le¢al, 1993; Mogilevtsev and Ya, 1996; Moya-
Cessa, 1995; Obada and Abd Al-Kader, 1998, 1999; Obada and Omar, 1995, 1997;
Schleich and Raymer, 1997; Yurke and Stoler, 1986; Zheng and Guo, 1996).

The Jaynes-Cummings model (Shore and Knight, 1993, and references
therein) is realized in the ion trap by the application of a laser tuned to the first
upper vibrational sideband. Tuning to the first lower vibrational sideband yields
the counterrotating terms in Jaynes-Cummings model. Tuning tahtedebands
gives rise tk-photon vibrational analogue of multiphoton generalizations to the
Jaynes—Cummings discussed in the quantum optics literature. However, driving
only the resonant transition between the two levels of the ion results in a Kerr-type
interaction. This is useful in making quantum nondemolition measurements of an
ion and in generating quantum superposition of coherent states. In this section,
we wish to consider the production of four-component states. Let a two-level ion
of massM move in a harmonic potential of frequeney in the x-direction. Let
a(a™) stand for the annihilation (creation) operator of the vibrational boson quanta
in the x-direction. Then the position operator is givenoy= Axg(a + a*), with
AXg = (2wxM)~Y2, the width of the harmonic ground state. In this scheme two
beams of lasers applied along thexis are required to manipulate the motion
of the atom: they are detuned Hywy. In the rotating wave approximation the
Hamiltonian for this system is given by

H = wata+ %az — (LE~(x,)o_ + h-0). 2.1)
The first two terms describe the external and internal free motion of the ion, and
the last term stands for the atom—field interaction. The dipole matrix element
u and the transition frequenay, of the two-level ion, and the operatoss =
le)(el — |g){(al, o = |€){g|, o = |g) (€|, where|e) and|g) are the atomic excited
and ground state respectively. The negative frequency part of the driving electric
field is given by

E-(x,t) = E; g lwo—ot—kix+ds] 4 Ezei[(w0+wx)t_kzx+¢2], (2.2)

whereE; and¢; indicate amplitudes and phases of the driving beams. When the
trapping frequency is much larger than the other characteristic frequencies, and
providing that the field is resonant with one of the vibrational sidebands, then the
ion—field interaction can be described by a nonlinear Jaynes—Cummings model
(JCM) (de Matos Filho and Vogel, 1996; Gardirral, 1997; ltancet al., 1997,
Kneer and Law, 1998; Law and Eberly, 1996; Monsgdeal,, 1996; Schleich and
Raymer, 1997; Steinbad al., 1997; Vogel and de Matos Filho, 1995; Wineland
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et al, 1998). Accordingly, in the interaction picture the Hamiltonian (2.1) takes
the form

00 ] B (i n1)21+1 o
H| = — {Ql e|¢l e ’I%/Zi_ - (a+)J+ a.]
; j'(J +1)!

(in2)?
ji(j +1)!

Q) = wE; are the Rabifrequencies anfl= (k?/2M)(1/wy) are the Lamb-Dicke
parameters, and they describe the ratio between the single photon recoil energy and
the energy-level spacing in the harmonic oscillator strength. In the Lamb-Dicke
limit where the vibrational amplitude of the ion is much smaller than the laser
wavelength it is sufficient to keep the first few terms in (2.3), and one works with
an effective Hamiltoniamd, of the form

+Qpe® e 2 (a*)’ aj+1}(r +h-c. (2.3)

H = —(2g1a* + 2g,a)0_ +h-c. (2.4a)
where
g =i erfen? j=1,2 (2.4b)

The exponentials may be put equal to 1 because of the smallnessﬁfsthe

In (2.4) the first term-€ its h- c) is the usual JCM Hamiltonian. It describes
the first red-side band resonance, while the second territs(h- ¢) is the first
blue-side band resonance. It is the counter-rotating term that is not present in the
cavity Q.E.D. The motional and electronic dynamics may be decoupled in the
Hamiltonian (2.4) by adding another interaction (de Matos Filho and Vogel, 1996;
Gardineret al,, 1997; Itancet al, 1997; Kneer and Law, 1998; Law and Eberly,
1996; Monroeet al,, 1996; Steinbacht al, 1997; Vogel and de Matos Filho, 1995;
Winelandet al,, 1998), and we finish up with

Hi = —{(2(0: + g)at + 2(gf + G2)al(oy + o). (2.5)

Under this Hamiltonian any atom prepared in the state/@)(/e) + |g)) that can

be generated from the ground state by applyingacarrier pulse will stay in this
state and will be left unchanged (de Matos Filho and Vogel, 1996; Garelirar

1997; Itanoet al, 1997; Kneer and Law, 1998; Law and Eberly, 1996; Monroe
et al, 1996, Steinbaclet al, 1997; Vogel and de Matos Filho, 1995; Wineland

et al, 1998). Thus the dynamics is reduced to that of the motional degrees of
freedom only. Under this Hamiltonian the motional dynamics evolves toward the
DFSs|a, m) when it is prepared initially in the Fock staim). The statgm) can

be prepared with a very high efficiency according to recent experiments (de Matos
Filho and Vogel, 1996; Gardinet al,, 1997; Itancet al, 1997; Kneer and Law,
1998; Law and Eberly, 1996; Monra al., 1996; Steinbackt al,, 1997; Vogel
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and de Matos Filho, 1995; Winelaetlal,, 1998). The preparation of superposition
of these states can be done according to the scheme described here.
We start from

W) =) cln, g). (2.6)
n=0

This state can be generated by successive applications of an external classical
driving field and a quantized field as described in detail in previous studies (Abd
Al-Kader, 1999; de Matos Filho and Vogel, 1996; Gardisérl., 1997; Itano
et al, 1997; Kneer and Law, 1998; Law and Eberly, 1996; Morebal.,, 1996;
Obada and Abd Al-Kader, 1998, 1999; Schleich and Raymer, 1997; Steinbach
et al, 1997; Vogel and de Matos Filho, 1995; Winelagtdal, 1998). Applying
classical field (carrier) for a duration time whose evolution operator takes the
form

Us(t1) = cosQile)(e] — i €% sinQiale) (g
—ie "% sinQyi|g) (el + cosit1|g) (g, (2.7)

where; is the Rabi frequency in this case afydis a phase on the state (2.6),
and takingQity = 7 /4, 61 = /2, we get

1&(12)) = Us(ra) £(0)) = Z 51 ® (1e) + 19). (2.8)

The internal state|é) + |g)) WI|| remain constant under the Hamiltonian
(2.4). Applying the HamlltomarH D for a time durationr,. The statel&(z7))
evolves to

|(12)) = [&(r2 + 7)) = Ur(r2) (1)) = Z Sl @ (e +19),  (29)

wherea = 2i (g1 + g3) 7. The state in (2.9) is a superposition of displaced Fock
states but with the same displacemenT his state is equivalent to that discussed
in Obada and Abd Al-Kader (1998, 1999) and Abd Al-Kader (1999).

We choose the polarization in the quantized field so that it affects the excited
state only as described in previous studies (de Matos Filho and Vogel, 1996;
Gardineret al, 1997; Itancet al,, 1997; Kneer and Law, 1998; Law and Eberly,
1996; Monroeet al., 1996; Steinbacht al., 1997; Vogel and de Matos Filho, 1995;
Winelandet al, 1998) and apply the linear field in the Hamiltonian (|}d(1)) for
a durationrs, which generates the state

|&(za)) = Ua(ta)[&(r2)) = Z S[B. 1) + e, M) IQ)) (2.10)

whereg = o + 2i (61 + §3)7s.
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After that we apply a carrier pulse for a duratiorwith the evolution operator
(2.7). It produces the following state

1§ (1)) = Z 518, ) (cosale) —i €™ sinSza[))

+ o, N)(—i €'%2siNQ174l€) + COS174|Q))]

m

= ) _Gal(cosQual, n) — i € sinQiwla, n))le))
n=0

+ (cosQ1taler, N) — i €% sinQ1 74| 8, N))I0)]
= Y {(CwlB, ) + Canle, M)l€) + (D1nlB, N)
+ Danla, m)Ig)}- (2.11)

Apply the linear field for a duratioms with the polarization chosen, so that
it generates the state

| (ts)) = Ua(ts)I€ (ta))
=Y {(C1nlB1. N) + Canlarz, N))[€)
+ (D1nl|B, n) + Dznle, N))[9)}. (2.12)

After that we apply a carrier pulse for a duratigrwith the evolution operator
(2.7). We have

1€ (t6)) = Ui(t6)|&(T5))
= Y {[CunlB1, n) + Canlez, n) + DialB, ) + Danler, n)]le)
+ [KinlB1, n) + Kanla, ) + (BinlB, n) 4 Bale, M]lg)).  (2.13)

Detecting the atom in either of its electronic states gives
m
W) = [AnlB, n) + Bula, n) + ColB1, n) + Knlag, n)]. (2.14)

The states (2.14) correspond to a system of four-component superposition of
the DFSs. After the proposal scheme has been made, we will examine the possible
occurrence of nonclassical effects exhibited by the states of Eq. (2.14).

3. CHARACTERISTIC FUNCTION OF FOUR-COMPONENT OF DFSs

It is well-known that the DFSs is defined by (Abd Al-Kader, 1994; Agarwal
and Tara, 1991; Boiteux and Levelut, 1973; De Oliveital., 1990; Moya-Cessa
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and Knight, 1993; Roy and Singh, 1982; Satyanarayana, 1985; Wunsche, 1991)

lee, m) = D()|m) = Y _a(n, m)|n). (3.2)
n=0

The operatoD(«) = exp@at —«*a) anda = |a|€? is the displacement opera-
tor (Glauber, 1963; Perina, 1984; Walls and Milburn, 1994), wia€ee) is the
annihilation (creation) operator of the boson field.

The scalar produgs, m | «, n) is given by (Abd Al-Kader; 1994; Agarwal
and Tara, 1991; De Oliveirt al,, 1990; Moya-Cessa and Knight, 1993; Wunsche,
1991)

Bla)y/S@—pA" LM "(a—B?), m>n
(B,m|a,n)= (3.2

(B la)y/ (B —a)" "L ™l — B*), n>m

where the scalar product of two coherent states has the well-known(yalug =
expl(—1/2)(la|? + |8]?) + aB*], and Lg,(x) is the Laguerre polynomial

=3 ()8 (3:3)

— |
—\m-s/ s

Let the wider class of quantum statey ) have the form
_1 N
(Wn) = A2 D Kjlag, my), (3.4)
j=1

with Ay as the normalization constant.
To shed some light on this state (3.4) we shall be more specific and consider
the superposition of four DFSs in the form

W) = Aﬁ[laoy m) + exp{&1)|—ao, M)
+ exp(&2)lico, M) + expl&s)|—iag, M)], (3.5)
where the normalization constafyj is given by
Ay = {4+ 2 cossre 2 Lin(4laol?) + 2 coss — £)e 2" Lin(4lacol?)
+ 2[cos(ao|? + &) + cos(aol? + & — £1)]e”" Lm(1200/?)
+ 2[cos(ao|? + &) + cos(aol + &1 — £2)]e 2% Ln(1200/2)).  (3.6)

Thes-parameterized CF is perhaps one of the most well-known functions in
quantum optics, since it is the Fourier transformation oftharameterized QDF.



Generation and Properties of a Superposition of DFSs 1723

The s-parameterized CF is defined by (Cahill and Glauber, 1969; Glauber, 1963;
Perina, 1984; Walls and Milburn, 1994)

C(h, s) = Tr[pD()] exp<§|)\|2>, 3.7)

with D()) as given before (see after Eq. (3.1)). Hevés an ordering parameter
wheres = (—1) 1 means (anti-)normal ordering agek 0 is symmetrical or Weyl
ordering (Cahill and Glauber, 1969; Wsche, 1998). Using the density operator
0 = |Wa)(Wy|, we find the correspondingparameterized CF in the form

Ca(r,5) = Aﬁexp(;w) { [exp{—%w} Lm(|x|2)}[exp(asx )
+ exp(—agr + agr®) + exp(—iejr — iaor™) + exploagr + icor™)]

. 1
+expyi& — E'A — 2ao|2} Lm(1A — 200%)
. 1 2 2
+expy —ié& — Elk + 2000]  Lin(IA + 200]%)

) 1 ) )
+expyi(és — &) — EM -2 Ololz} Lm(1A — 2iaol?)

: 1 : .
+exp| -6 &) = 514+ 200k | Ll + 2aol?)

+ exp| —%I/\ +iap— a0|2}Lm(|x +iag — agl?)

X [exp(i &+ %{(—i + Dogr — (i + Daor™} +1i Iao|2>

+ exp<i (61— &3) + %{(i — Dogh + (i + DoA™} — i |a0|2)]
+exp{—%|/\ —iag— a0|2}Lm(|k —iag — aol?)

y [exp(i 6 101+ Dorgh + 1 — Doror) |0lo|2>

1
+exp(i 1~ &)+ 51—+ Dugh — = ] + ook |
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+exp{—%|k +iag +ao|2}Lm(|/\ +iag + agl?)

y [exp(i (65— &) + 5(~( + Dagh — (i — Daor") |ao|2)
+exp(—i$3 + %{(i + Dagr + (i — Daor™} +1i |Olo|2>]
+exp{—%|k — i+ ao|2} Lm(JA — i + aol?)

< [exp(i (65— &) + 50 — Dagh +( + Dok} + |ao|2>

-|—exp(—i§‘3 + %{—(i — Dofr — (i + LDoor™} —1i |ao|2>i| } (3.8)

Once thes-parameterized CF is obtained, one can calculate any expectation
value for the field operators from it.

4. THE NONCLASSICAL PROPERTIES OF
FOUR-COMPONENT DFSs

We now examine these states for specific nonclassical properties. There are
essentially two possible ways for nonclassical effects to manifest themselves: One
is the occurrence of sub-Poissonian statistics (amplitude squeezing), the second is
quadrature squeezing.

4.1. Photon Number Distribution

We begin by looking at the photon number distribution for the spétg.
The photon number normal generating funct@®)(x, 1) is simply connected to
the normal ¢ = 1) CF by the relation (Glauber, 1963; Perina, 1984; Walls and
Milburn, 1994)

(N) 1 1BI? 9
cMi, 1) = — [ expl —== |C(B, 1) d?8, (4.1)
TA A
and it generates photon number distributions in the form
1" d
P(n) = o dA”C (*, Dlj=1- (4.2)

Also, the photon number distributidd(n) can be obtained through the relation
P(n) = [(n | Wa)?. (4.3)
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In Fig. 1 we illustrate the photon number distributiBn) with og = 4, & =
0,i =1, 2,3 The excited photon numben is assumed as (An =1 and (B)
m = 2. These figures show the oscillations of the distribution that result from
interference between the different DFSs. It is found thAétn + 1) are nonzero
for m = 1 while P(4n 4 2) are nonzero fom = 2, as could be expected.

4.2. Autocorrelation Function g®(0)

To characterize the width of the distribution, it is convenient to use the auto-
correlation function defined by
@) - @78 _ ., (anf) —m)

g'“/(0) = a? 1+ e (4.4)
wheren = ata is the photon number operator. Whenevex @?(0) < 1, or
whenever An?) < (n), photon antibunching is said to exist.

The functiong®(0) has been classified such that the light wjth < 1 has
a sub-Poissonian distribution, the light withk1lg® < 2 has a super-Poissonian
distribution, and the lightwitlg® > 2is called super thermallight. Itis well known
that the coherency is unity for coherent light (with Poissonian distribution).
One readily finds the expectation values

([a*'a]s) = Tr[p{a*"d'},]
< o
Ak g(—a)!
that are necessary to examine statistical properties of the field state. In addition, it
is used to calculate the correlation functig?(0).
In Fig. 2 we plot the auto-correlation functigff’(0) against the displacement
parametety, withg = 0,i = 1, 2, 3andn = 1, 2, 3, 5. Itisapparentthatthe light

is sub-Poissonian light farg < 1 for the values of considered. But it becomes
Poissonian for increasing valuesamj.

C(, 9) lr=r=0 (4.5)

4.3. Squeezing

We next look at squeezing. To do this, we introduce the two quadrature
operators

1 1
Xy = E(a+ a") and X;= E(a —at). (4.6)

These are dimensionless position and momentum operators for a harmonic os-
cillator. They satisfy K1, X] =i/2. The uncertainty relation in this case is
((AX1)?)((AX2)?) > 1/16 with the varianc&(A X)?) = <xj2> — (Xj)2. The field

is said to be squeezed i\(X;)? < 1/4for j = 1 or 2.
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Fig. 1. We illustrate the photon number distributidd(n) with oo =4,& =0,i =1, 2, 3, and

m =1, 2 in Fig. 1(A) and (B) respectively.
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{a}
8 r . r . . . .

[ o~

a0

Fig. 2. Coherence functiom® measured on vertical axis and horizontal axis indicates
the displacement parameteg. The number of photons of initial state (Four-component
superposition of DFSs) have the valuas= 1 (solid curve)m = 2 (dotted curve)m = 3
(chained curve) anth = 5 (dashed curve). The remainder parameters assume the same
values in Fig. 1.

The average values of the quadrature field operarsand(X5) are directly
computed. Also, variances of the quadrature field oper&tark;)?) and((A X»)?)
are calculated.

The squeezing is best parameterized by

(AX})?» —025
j=————— j=1,2, 4.7
i 0.25 J (4.7)
such that squeezing exits ferl < q; < 0, i.e., the squeezing condition now reads
g; < 0, and the maximum squeezing correspondg;te= —1. Squeezing in one
guadrature is achieved at the expense of increased noise in the conjugate quadra-
ture; therefore, if one of the;s is less than zero, the other should be greater than
zero.

The quadratures have no squeezing for these states with the same parameters
of Fig. 2.
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4.4. Phase Distribution

In the Barnett and Pegg (1986, 1989a,b) phase operator formalism, all phys-
ical quantities are calculated is 4 1)-dimensional space. After all calculations
are completeds is made infinite. the Pegg—Barnett phase operator and its eigen-
states are defined i {+ 1)-dimensional spac& spanned by the number states
|0), |11), ..., |s) Once the phase distribution functié?{®) is known, all the quan-
tum mechanical phase expectation values can be calculated with this function in
a manner similar to the classical one by integration évefQuantum phase and
phase dependent measurements,” 1993; Lynch, 1995; Peghal/a1998).

The Pegg—Barnett phase distribution is given by

P@®) = % i i CnC;, exp[—i(n — m)o], (4.8)

n=0 m=0

or we can write it in the form

P@®) = % {1 + 2Rei CnCr exp[—i(n — m)e]} (4.9

n>m

for the statg\W¥,) defined in terms of number (Fock) states on the form
[Wa) =Y Cqln), (4.10)
n=0

whereC,, = (n | W) is the amplitude.

In Fig. 3 we plot the phase distributidd(6) for |ag| = 1, with& = 0,i =
1, 2,3, andm = 1 (solid curve) andn = 2 (dotted curve). For small values of
the displacement parameigs there is no information about the phase. This can
be atributed to the effect of the number state. The four peaks is found for the
phase distribution with increasing amplitugg Calculations show that the same
four peaks are symmetrically located-atr /2, 0, and the two wings ats, but
with large amplitude for increaseg.

4.5. Quadrature Distributions

To calculate the quadrature component distribution for the superposition state
(i.e., the phase-parameterized field strength distribution) we write

P(x, ®) = [(x, ® | Wa)[2, (4.12)

which can be measured in balanced homodyne detection [Rakh§1997, 1998).
We first expand the eigenstdte @) of the quadrature component

X(®) = %(e‘iq’a +€%a™) (4.12)
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Fig. 3. The phase distribution for the displacement parameter
ap = 1, with m =1 (solid curve) andn = 2 (dotted curve).
The remainder parameters assume the same values as in Fig. 1.

in the photon number basis as Daletal. (1997, 1998)

X, @) = i exp(——x ) i (4.13)

7T4 :0

By using Egs. (4.10) and (4.13) we have the quadrature component distribution
(4.11) in the form

2 Z exp[@( — j)] ] CiCrH;(H(X).  (4.14)

P(x, ®) = W m

In Fig. 4 we plot the phase-parameterized field strength distribution (quadra-
ture componentpP(x, ®) with g = 1. The excited photon number is assumed as
(A) m =1 and (B)m = 2. In general the figure foP(x, ®) is symmetric around
X =0 and® = 7/2. Changing the displacement parametgmakes a marked
difference for the distributions. Fon = 1, the two-peak shape is clear for= 0
for m = 2, the three-peak shape is showngos= 0.

For small values of, it is observed that one-peak shape for the distribu-
tion for ® = 0 or & disappears a® increases and diverges dsgets closer to
7 /2. However, numerical calculations show that increasing the paramgdeids
further oscillations to the quadrature distributiBiix, ). In addition, the inter-
ference can exist at large valuesagf The number of peaks increases with the
increase om.
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Fig. 4. Plots of the phase-parameterized field strength distribution (quadrature component)
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4.6. Quasiprobability Functions

The computation of quasiprobability functions, given a density matrix, is often
a tedious task that involves integration over phase space variables. The exception
is the Q function, which is simply expressed as the coherent expectation value of
the field density matrix and is therefore widely adopted to describe field dynamics
in situations where the density matrix is easily computed. However, the Wigner
function has an interesting characteristic that makes it an excellent diagnostic of
guantum properties. It has negative values in some areas of the phase space for the
nonclassical field states (Hillest al,, 1984; Lee, 1995).

Here we examine the-parameterized quasiprobability function associated
with our states. As is well known thesgparameterized quasiprobability functions
provide a way to characterize the nonclassical nature of a quantum field. The
s-parameterized quasi-probability function is the Fourier transformation of the
s-parameterized characteristic function

F(B,s) = % f C(n, s) exp*B — A8*) d2a (4.15)

where the real parametedefines the corresponding phase space distribution. It is
well known that such a parameter is associated with the ordering of the field bosonic
operators. Forexample~= 1, 0, and-1 correspond to the normal, symmetric, and
antinormal ordering, respectively. The corresponding quasiprobability functions
are theP function, the Wigner function, an@ function. The general expression of
s-parameterized characteristic function in Eq. (3.8) may be employed to facilitate
the evaluation of the-parameterized quasiprobability function. The problems in
this scheme arise in the integration of Eq. (4.15), which is not easy to calculate, so
that we consider th® function only, which is defined by (Glauber, 1963; Perina,
1984; Walls and Milburn, 1994)

1
Q(B) = —I(B | Wy) |2 (4.16)

where|B) is a coherent state. More than just a theoretical curio€ify) can be
detected in homodyne experiments (Leonhardt, 1997; Leonhardt and Paul, 1995).
This distribution functionQ(8) has no singularity problems at all. It exists for all
density matrixes, is bounded, and is even greater than or equal to zerodotftall

has the form

B)" (8"

(4.17)
nim!

1 o0
Q(B) = = exp(-IBI") ) CnCy,
T n,m=0
In Fig. 5 we have sketched th® function withag =4 andm = 1. We
show that the four sets of hollowed-pek structures of DFSs is observed iAs
creases the four sets of peaks are seperated away fromthexentes = 0,y =
3B =0.
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Fig. 5. TheQ functionfor the four-component DFSs superposition states. The parameters are assumed
asop = 4 andm = 1. The remainder parameters assume the same values as in Fig. . H&t€s)

andy = J(8).

The Wigner function is usually expressed in an integral form, which is not
always easy to compute as shown here. Recentipsbtie (1998) has derived an-
other form for the Wigner function, and in general, §gparameterized quasiprob-
ability function (Cahill and Glauber, 1969; Glauber, 1963; Perina, 1984; Walls
and Milburn, 1994; Winsche, 1998). According to Wische (1998) the Wigner
function is given by

|
W(B) = ; exp(-2181%) Z CnCy (—1)”/g(Zﬂ*)m‘”Lﬂ"‘”Mlﬂ)lz) (4.18)
n,m=0 .
Fig. 6 shows plots for the Wigner function for the same parameters of Fig. 5.
It is evident that the function takes on negative values over some rangaraf
y, thus indicating the nonclassical nature of the states. Calculations show that the
function takes on more negative values for increasing is seen that oscillatory
behavior of the Wigner function of four-component DFSs is observed.

5. CONCLUSIONS

We have discussed the properties and a generation scheme of four-component
DFSs. A generation scheme for these states has been presented. This scheme de-
pends on driving the vibrational motion of a trapped ion to any quantum state based
on sequence of excitations of the ion by a classical laser field. During each excita-
tion, the laser field is turned to the respective lower vibrational sideband. Therefore,
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Fig. 6. The Wigner function for the four-component DFSs superposition states. The parameters are
assumed as in Fig. 5.

the vibrational motion is prepared in the desired state of a four-component super-
position of DFSs. Based on the currently available techniques [Wineland group,
(de Matos Filho and Vogel, 1996; Gardiretral., 1997; Itancet al, 1997; Kneer

and Law, 1998; Law and Eberly, 1996; Monretel., 1996; Steinbacht al.,, 1997;

Vogel and de Matos Filho, 1995; Winelard al, 1998)], the scheme may be
realizable.

We have discussed the photon number distribugparameterized charac-
teristic function, and quasiprobability distribution function. The three-dimensional
plots of the Wigner and) functions for some parameters have been illustrated.
Several moments have been calculated by using the characteristic function. The
second-order correlation functiog®(0) has been investigated numerically.

The squeezing properties for these states have been discussed. We have analyzed
the quadrature component distributions for the superposition of four DFSs and
have presented analytical and numerical results. We have found that the basic fea-
tures of superposition of a four DFS, such as the appearance of several separated
peaks and an interference pattern, are present.

The present work was motivated by the desire to realize physically certain
specific quantum states (superposition of DFSs). It is hoped that the superposition
of DFSs will find application in quantum computer, quantum information Shor
and Preskill (2000), and quantum optics.
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