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A detailed discussion of a type of four-component superposition of displaced Fock
states (DFSs) is presented. A generation scheme is proposed for these states. The
s-parameterized characteristic function (CF) and the quasiprobability distribution func-
tions (QDFs) of these states are calculated. The nonclassical properties of these states
such as photon number distribution and squeezing are discussed. The quadrature distri-
butions are illustrated. The Pegg–Barnett phase distribution is discussed.

1. INTRODUCTION

The concept of the photon in the quantum theory of a radiation field has
been built on the Fock (number) state|n〉. However, the coherent state is an-
other important state; it may be defined by the action of a displacement operator
D(α) on the vacuum state. These states have been extensively studied (Glauber,
1963; Perina, 1984; Walls and Milburn, 1994). On the other hand, the displaced
Fock states (DFSs) are very important kinds of states in quantum optics, defined
by the action of the displacement operator on the number state (Abd Al-Kader,
1994; Agarwal and Tara, 1991; Boiteux and Levelut, 1973; De Oliveiraet al.,
1990; Moya-Cessa and Knight, 1993; Roy and Singh, 1982; Satyanarayana, 1985;
Wunsche, 1991). They can be regarded as a generalized class of the Fock and coher-
ent states. They form a complete basis, and have interesting and unusual physical
properties (Abd Al-Kader, 1994; Agarwal and Tara, 1991; Boiteux and Levelut,
1973; De Oliveiraet al., 1990; Moya-Cessa and Knight, 1993; Roy and Singh,
1982; Satyanarayana, 1985; Wunsche, 1991). The quasiprobability distribution
functions (QDFs) have been represented as a series in terms of these states (Abd
Al-Kader, 1994; Agarwal and Tara, 1991; De Oliveiraet al., 1990; Moya-Cessa
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and Knight, 1993; Wunsche, 1991). Experiments have been performed to prepare
the Fock states, coherent states, and states derived from them, in recent years (de
Matos Filho and Vogel, 1996; Gardineret al., 1997; Itanoet al., 1997; Kneer and
Law, 1998; Law and Eberly, 1996; Monroeet al., 1996; Steinbachet al., 1997;
Vogel and de Matos Filho, 1995; Winelandet al., 1998). The various schemes pro-
posed have been built on the motional dynamics of the centre of mass of trapped
ions (Abd Al-Kader, 1999; Obada and Abd Al-Kader, 1998, 1999; Schleich and
Raymer, 1997).

Recently, a considerable effort has been devoted to a description of the non-
classical properties of superpositions of quantum states of light (Abd Al-Kader,
1999; Abdallaet al., 1994; Ban, 1995; Boseet al., 1997; Buzeket al., 1992; Dakna
et al., 1997, 1998; Dodonovet al., 1996, 1998; Garrawayet al., 1994, 1995; Gou
et al., 1997; Hach and Gerry, 1992, 1993; Leeet al., 1993; Mogilevtsev and Ya,
1996; Moya-Cessa, 1995; Obada and Abd Al-Kader, 1998, 1999; Obada and Omar,
1995, 1997; Schleich and Raymer, 1997; Yurke and Stoler, 1986; Zheng and Guo,
1996). Squeezing is one of many nonclassical properties that originate from the
quantum interference between the component states of the superposition states.
In addition, there has been much interest in the properties and in the generation
of the various superposition states of light (Abd Al-Kader, 1999; Abdallaet al.,
1994; Ban, 1995; Boseet al., 1997; Buzeket al., 1992; Daknaet al., 1997, 1998;
Dodonovet al., 1996, 1998; Garrawayet al., 1994, 1995; Gouet al., 1997; Hach and
Gerry, 1992, 1993; Leeet al., 1993; Mogilevtsev and Ya, 1996; Moya-Cessa, 1995;
Obada and Abd Al-Kader, 1998, 1999; Obada and Omar, 1995, 1997; Schleich and
Raymer, 1997; Yurke and Stoler, 1986; Zheng and Guo, 1996). Schr¨odinger cat
states are quantum superpositions of macroscopically distinguishable states, they
can be produced in quantum optical experiments (Abd Al-Kader, 1999; Obada
and Abd Al-Kader, 1998, 1999; Schleich and Raymer, 1997). Since the first pro-
posal made by Yurke and Stoler (1986), a lot of interest has been paid to the idea
of using nonlinear wave-mixing processes for the generation of multicomponent
entangled Schr¨odinger cat states of an electromagnetic field (Ban, 1995; Buzek
et al., 1992; Garrawayet al., 1994, 1995; Yurke and Stoler, 1986). Creation of
the superposition states by applying a sequence of laser pulses, which entangle
internal (electronic) and external (motional) states of the ion, have been reported
in Schleich and Raymer (1997), Obada and Abd Al-Kader (1998, 1999), and Abd
Al-Kader (1999). They showed that by choosing appropriate interaction durations,
a coherent input state can be transformed into a superposition state of two or four
coherent component states located on a circle (Boseet al., 1997; Hach and Gerry,
1992; Leeet al., 1993; Mogilevtsev and Ya, 1996). These fundamental researches
not only lead us to a deeper understanding of the nature of light, but also have
applications in the quantum communications and in detection of weak signals.

The characteristic function (CF) plays the central role in the fundamental
exposition of the quasiprobability distribution functions (QDFs). It is defined as
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the trace of the product of the density operator with the displacement operator
(Hillery et al., 1984, and references therein; Lee, 1995). Different orders of product
of creation and annihilation average values have been obtained by these functions.
Also photon number distributions and various moments can be generated from
this function (Cahill and Glauber, 1969; Hilleryet al., 1984; Lee, 1995; W¨unsche,
1998).

Recently Barnett and Pegg (1986, 1989a,b) introduced a new Hermitian phase
formalism that successfully overcomes the troubles inherent in the Susskind–
Glogower (Carruthers and Nieto, 1968; Jackiw, 1968; Loudon, 1973; Susskind
and Glogower, 1964) phase formalism and enables one to study finer details of
the phase properties of quantum fields. Such quantities as expectation values and
variances of the Hermitian phase operators or phase distribution functions are now
available for investigations (“Quantum phase and phase dependent measurements,”
1993; Lynch, 1995; Perinovaet al., 1998). One of our interests is to investigate the
phase properties here.

In a previous paper we have considered the superposition of a pair of DFSs
(Abd Al-Kader, 1999; Obada and Abd Al-Kader, 1998, 1999). These exhibit os-
cillations in the photon number distributions and other nonclassical properties,
such as squeezing or sub-Poissonian photon statistics. A generation scheme for
these states is presented by using the quantized motional degrees of freedom of
a trapped ion. In this contribution we study the statistical properties of a multi-
component DFS. To investigate the statistical properties of these multicomponent
states, we evaluate the correspondings-parameterized characteristic function (CF)
ands-parameterized quasiprobability function (QDF).

In Section 2 a generation scheme for the so-called four-component super-
position displaced Fock states (DFSs) is considered. In Section 3 we introduce
the CF for the four component DFSs. In Section 4 the nonclassical properties are
discussed, such as photon number distribution, correlation function, squeezing,
phase distribution, quadrature distribution, and quasiprobability function. Finally
we draw some conclusions.

2. GENERATION SCHEME OF A FOUR-COMPONENT
SUPERPOSITION OF DFSs

Recent advances in the laser cooling and trapping of ions have made possi-
ble a realization of the Jaynes–Cummings model (Shore and Knight, 1993, and
references therein), for which the usual single mode quantized electromagnetic
field is replaced by the quantized vibrational motion of the ion’s center of mass,
which is coupled to two internal states of the ion by a classical driving laser field.
In addition, it has become possible to generate a variety of motional states for the
ion. These include thermal, Fock (number), and coherent (Schleich and Raymer,
1997), where the displaced Fock (number) and coherent states have distinctly
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nonclassical properties. The most general states of the pervious—the DFSs—have
also been discussed in the context of trapped ions (Abd Al-Kader, 1999; Abdalla
et al., 1994; Ban, 1995; Boseet al., 1997; Buzeket al., 1992; Daknaet al., 1997,
1998; Dodonovet al., 1996, 1998; Garrawayet al., 1994, 1995; Gouet al., 1997;
Hach and Gerry, 1992, 1993; Leeet al., 1993; Mogilevtsev and Ya, 1996; Moya-
Cessa, 1995; Obada and Abd Al-Kader, 1998, 1999; Obada and Omar, 1995, 1997;
Schleich and Raymer, 1997; Yurke and Stoler, 1986; Zheng and Guo, 1996).

The Jaynes-Cummings model (Shore and Knight, 1993, and references
therein) is realized in the ion trap by the application of a laser tuned to the first
upper vibrational sideband. Tuning to the first lower vibrational sideband yields
the counterrotating terms in Jaynes-Cummings model. Tuning to thekth sidebands
gives rise tok-photon vibrational analogue of multiphoton generalizations to the
Jaynes–Cummings discussed in the quantum optics literature. However, driving
only the resonant transition between the two levels of the ion results in a Kerr-type
interaction. This is useful in making quantum nondemolition measurements of an
ion and in generating quantum superposition of coherent states. In this section,
we wish to consider the production of four-component states. Let a two-level ion
of massM move in a harmonic potential of frequencyωx in the x-direction. Let
a(a+) stand for the annihilation (creation) operator of the vibrational boson quanta
in thex-direction. Then the position operator is given byx = 1x0(a+ a+), with
1x0 = (2ωx M)−1/2, the width of the harmonic ground state. In this scheme two
beams of lasers applied along thex-axis are required to manipulate the motion
of the atom: they are detuned by±ωx. In the rotating wave approximation the
Hamiltonian for this system is given by

H = ωxa+a+ ω0

2
σz− (µE−(x, t)σ− + h · c). (2.1)

The first two terms describe the external and internal free motion of the ion, and
the last term stands for the atom–field interaction. The dipole matrix element
µ and the transition frequencyω0 of the two-level ion, and the operatorsσz =
|e〉〈e| − |g〉〈g|, σ+ = |e〉〈g|, σ− = |g〉〈e|, where|e〉 and|g〉 are the atomic excited
and ground state respectively. The negative frequency part of the driving electric
field is given by

E−(x, t) = E1 ei [(ω0−ωx)t−k1x+φ1] + E2 ei [(ω0+ωx)t−k2x+φ2] , (2.2)

whereEi andφi indicate amplitudes and phases of the driving beams. When the
trapping frequency is much larger than the other characteristic frequencies, and
providing that the field is resonant with one of the vibrational sidebands, then the
ion–field interaction can be described by a nonlinear Jaynes–Cummings model
(JCM) (de Matos Filho and Vogel, 1996; Gardineret al., 1997; Itanoet al., 1997;
Kneer and Law, 1998; Law and Eberly, 1996; Monroeet al., 1996; Schleich and
Raymer, 1997; Steinbachet al., 1997; Vogel and de Matos Filho, 1995; Wineland
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et al., 1998). Accordingly, in the interaction picture the Hamiltonian (2.1) takes
the form

HI = −
∞∑
j=0

{
Ä1 eiφ1 e−η

2
1/2

(iη1)2 j+1

j !( j + 1)!
(a+) j+1aj

+Ä2 eiφ2 e−η
2
2/2

(iη2)2 j+1

j !( j + 1)!
(a+) j a j+1

}
σ− + h · c. (2.3)

Ä j = µEj are the Rabi frequencies andη2
l = (k2

l /2M)(1/ωx) are the Lamb–Dicke
parameters, and they describe the ratio between the single photon recoil energy and
the energy-level spacing in the harmonic oscillator strength. In the Lamb-Dicke
limit where the vibrational amplitude of the ion is much smaller than the laser
wavelength it is sufficient to keep the first few terms in (2.3), and one works with
an effective HamiltoniańHI of the form

H́I = −(2g1a+ + 2g2a)σ− + h · c. (2.4a)

where

gj = iÄ j eiφ j η2
j e−η

2
j /2, j = 1, 2. (2.4b)

The exponentials may be put equal to 1 because of the smallness of theη2
j s.

In (2.4) the first term (+ its h· c) is the usual JCM Hamiltonian. It describes
the first red-side band resonance, while the second term (+ its h· c) is the first
blue-side band resonance. It is the counter-rotating term that is not present in the
cavity Q.E.D. The motional and electronic dynamics may be decoupled in the
Hamiltonian (2.4) by adding another interaction (de Matos Filho and Vogel, 1996;
Gardineret al., 1997; Itanoet al., 1997; Kneer and Law, 1998; Law and Eberly,
1996; Monroeet al., 1996; Steinbachet al., 1997; Vogel and de Matos Filho, 1995;
Winelandet al., 1998), and we finish up with

H̄I = −{(2(g1+ g∗2)a+ + 2(g∗1 + g2)a}(σ+ + σ−). (2.5)

Under this Hamiltonian any atom prepared in the state (1/
√

2)(|e〉 + |g〉) that can
be generated from the ground state by applying aπ/2 carrier pulse will stay in this
state and will be left unchanged (de Matos Filho and Vogel, 1996; Gardineret al.,
1997; Itanoet al., 1997; Kneer and Law, 1998; Law and Eberly, 1996; Monroe
et al., 1996; Steinbachet al., 1997; Vogel and de Matos Filho, 1995; Wineland
et al., 1998). Thus the dynamics is reduced to that of the motional degrees of
freedom only. Under this Hamiltonian the motional dynamics evolves toward the
DFSs|α, m〉 when it is prepared initially in the Fock state|m〉. The state|m〉 can
be prepared with a very high efficiency according to recent experiments (de Matos
Filho and Vogel, 1996; Gardineret al., 1997; Itanoet al., 1997; Kneer and Law,
1998; Law and Eberly, 1996; Monroeet al., 1996; Steinbachet al., 1997; Vogel
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and de Matos Filho, 1995; Winelandet al., 1998). The preparation of superposition
of these states can be done according to the scheme described here.

We start from

|9(0)〉 =
m∑

n=0

cn|n, g〉. (2.6)

This state can be generated by successive applications of an external classical
driving field and a quantized field as described in detail in previous studies (Abd
Al-Kader, 1999; de Matos Filho and Vogel, 1996; Gardineret al., 1997; Itano
et al., 1997; Kneer and Law, 1998; Law and Eberly, 1996; Monroeet al., 1996;
Obada and Abd Al-Kader, 1998, 1999; Schleich and Raymer, 1997; Steinbach
et al., 1997; Vogel and de Matos Filho, 1995; Winelandet al., 1998). Applying
classical field (carrier) for a duration timeτ1 whose evolution operator takes the
form

U1(τ1) = cosÄ1τ1|e〉〈e| − i eei θ1 sinÄ1τ1|e〉〈g|
− i e−i θ1 sinÄ1τ1|g〉〈e| + cosÄ1τ1|g〉〈g|, (2.7)

whereÄ1 is the Rabi frequency in this case andθ1 is a phase on the state (2.6),
and takingÄ1τ1 = π/4, θ1 = π/2, we get

|ξ (τ1)〉 = U1(τ1)|ξ (0)〉 =
m∑

n=0

cn√
2
|n〉 ⊗ (|e〉 + |g〉). (2.8)

The internal state (|e〉 + |g〉) will remain constant under the Hamiltonian
(2.4). Applying the HamiltonianH (1)

I for a time durationτ2. The state|ξ (τ1)〉
evolves to

|ξ (τ2)〉 = |ξ (τ2+ τ1)〉 = U1(τ2)|ξ (τ1)〉 =
m∑

n=0

cn√
2
|α, n〉 ⊗ (|e〉 + |g〉), (2.9)

whereα = 2i (g1+ g∗2)τ2. The state in (2.9) is a superposition of displaced Fock
states but with the same displacementα. This state is equivalent to that discussed
in Obada and Abd Al-Kader (1998, 1999) and Abd Al-Kader (1999).

We choose the polarization in the quantized field so that it affects the excited
state only as described in previous studies (de Matos Filho and Vogel, 1996;
Gardineret al., 1997; Itanoet al., 1997; Kneer and Law, 1998; Law and Eberly,
1996; Monroeet al., 1996; Steinbachet al., 1997; Vogel and de Matos Filho, 1995;
Winelandet al., 1998) and apply the linear field in the Hamiltonian (i.e.,H (1)

I ) for
a durationτ3, which generates the state

|ξ (τ3)〉 = Ú2(τ3)|ξ (τ2)〉 =
m∑

n=0

cn√
2

[|β, n〉|e〉 + |α, n〉|g〉], (2.10)

whereβ = α + 2i (ǵ1+ ǵ∗2)τ3.
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After that we apply a carrier pulse for a durationτ4 with the evolution operator
(2.7). It produces the following state

|ξ (τ4)〉 =
m∑

n=0

cn√
2

[|β, n〉(cosÄ1τ4|e〉 − i e−i θ2 sinÄ1τ4|g〉)

+ |α, n〉(−i ei θ2sinÄ1τ4|e〉 + cosÄ1τ4|g〉)]

=
m∑

n=0

ćn[(cosÄ1τ4|β, n〉 − i ei θ2 sinÄ1τ4|α, n〉)|e〉)

+ (cosÄ1τ4|α, n〉 − i e−i θ2 sinÄ1τ4|β, n〉)|g〉]
=
∑
{(C1n|β, n〉 + C2n|α, n〉)|e〉 + (D1n|β, n〉

+ D2n|α, n〉)|g〉}. (2.11)

Apply the linear field for a durationτ5 with the polarization chosen, so that
it generates the state

|ξ (τ5)〉 = Ú2(τ5)|ξ (τ4)〉
=
∑
{(C1n|β1, n〉 + C2n|α1, n〉)|e〉

+ (D1n|β, n〉 + D2n|α, n〉)|g〉}. (2.12)

After that we apply a carrier pulse for a durationτ7 with the evolution operator
(2.7). We have

|ξ (τ6)〉 = U1(τ6)|ξ (τ5)〉
=
∑
{[Ć1n|β1, n〉 + Ć2n|α1, n〉 + D́1n|β, n〉 + D́2n|α, n〉]|e〉

+ [ Ḱ1n|β1, n〉 + Ḱ2n|α1, n〉 + (B́1n|β, n〉 + B́2n|α, n〉]|g〉}. (2.13)

Detecting the atom in either of its electronic states gives

|9〉 =
m∑

n=0

[ An|β, n〉 + Bn|α, n〉 + Cn|β1, n〉 + Kn|α1, n〉]. (2.14)

The states (2.14) correspond to a system of four-component superposition of
the DFSs. After the proposal scheme has been made, we will examine the possible
occurrence of nonclassical effects exhibited by the states of Eq. (2.14).

3. CHARACTERISTIC FUNCTION OF FOUR-COMPONENT OF DFSs

It is well-known that the DFSs is defined by (Abd Al-Kader, 1994; Agarwal
and Tara, 1991; Boiteux and Levelut, 1973; De Oliveiraet al., 1990; Moya-Cessa
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and Knight, 1993; Roy and Singh, 1982; Satyanarayana, 1985; Wunsche, 1991)

|α, m〉 = D(α)|m〉 =
∞∑

n=0

a(n, m)|n〉. (3.1)

The operatorD(α) = exp(αa+ −α∗a) andα = |α|ei θ is the displacement opera-
tor (Glauber, 1963; Perina, 1984; Walls and Milburn, 1994), wherea(a+) is the
annihilation (creation) operator of the boson field.

The scalar product〈β, m | α, n〉 is given by (Abd Al-Kader; 1994; Agarwal
and Tara, 1991; De Oliveiraet al., 1990; Moya-Cessa and Knight, 1993; Wunsche,
1991)

〈β, m | α, n〉 =


〈β | α〉

√
n!
m! (α − β)m−nLm−n

n (|α − β|2), m > n

〈β | α〉
√

m!
n! (β∗ − α∗)n−mLn−m

m (|α − β|2), n > m
(3.2)

where the scalar product of two coherent states has the well-known value〈β | α〉 =
exp[(−1/2)(|α|2+ |β|2)+ αβ∗], andLσm(x) is the Laguerre polynomial

Lσm(x) =
m∑

s=0

(
m+ σ
m− s

)
(−x)s

s!
. (3.3)

Let the wider class of quantum state|9N〉 have the form

|9N〉 = A
− 1

2
N

N∑
j=1

kj |α j , mj 〉, (3.4)

with AN as the normalization constant.
To shed some light on this state (3.4) we shall be more specific and consider

the superposition of four DFSs in the form

|94〉 = A
− 1

2
4 [|α0, m〉 + exp(i ξ1)|−α0, m〉
+ exp(i ξ2)|iα0, m〉 + exp(i ξ3)|−iα0, m〉], (3.5)

where the normalization constantA4 is given by

A4 =
{
4+ 2 cosξ1e−2|α|2 Lm(4|α0|2)+ 2 cos(ξ3− ξ2)e−2|α|2 Lm(4|α0|2)

+ 2[cos(|α0|2+ ξ2)+ cos(|α0|2+ ξ3− ξ1)]e−|α0|2 Lm(|2α0|2)

+ 2[cos(|α0|2+ ξ3)+ cos(|α0|2+ ξ1− ξ2)]e−1/2|α0|2 Lm(|2α0|2)
}
. (3.6)

Thes-parameterized CF is perhaps one of the most well-known functions in
quantum optics, since it is the Fourier transformation of thes-parameterized QDF.



P1: GFU

International Journal of Theoretical Physics [ijtp] PP232-343682 August 31, 2001 20:50 Style file version Nov. 19th, 1999

Generation and Properties of a Superposition of DFSs 1723

Thes-parameterized CF is defined by (Cahill and Glauber, 1969; Glauber, 1963;
Perina, 1984; Walls and Milburn, 1994)

C(λ, s) = Tr[ρD(λ)] exp

(
s

2
|λ|2

)
, (3.7)

with D(λ) as given before (see after Eq. (3.1)). Here,s is an ordering parameter
wheres= (−1) 1 means (anti-)normal ordering ands= 0 is symmetrical or Weyl
ordering (Cahill and Glauber, 1969; W¨unsche, 1998). Using the density operator
ρ = |94〉〈94|, we find the correspondings-parameterized CF in the form

C4(λ, s) = A−1
4 exp

(
s

2
|λ|2

){[
exp

{
−1

2
|λ|2

}
Lm(|λ|2)

]
[exp(α∗0λ− α0λ

∗)

+ exp(−α∗0λ+ α0λ
∗)+ exp(−iα∗0λ− iα0λ

∗)+ exp(iα∗0λ+ iα0λ
∗)]

+ exp

{
i ξ1− 1

2
|λ− 2α0|2

}
Lm(|λ− 2α0|2)

+ exp

{
−i ξ1− 1

2
|λ+ 2α0|2

}
Lm(|λ+ 2α0|2)

+ exp

{
i (ξ3− ξ2)− 1

2
|λ− 2iα0|2

}
Lm(|λ− 2iα0|2)

+ exp

{
−i (ξ3− ξ2)− 1

2
|λ+ 2iα0|2

}
Lm(|λ+ 2iα0|2)

+ exp

{
−1

2
|λ+ iα0− α0|2

}
Lm(|λ+ iα0− α0|2)

×
[
exp

(
i ξ2+ 1

2
{(−i + 1)α∗0λ− (i + 1)α0λ

∗} + i |α0|2
)

+ exp

(
i (ξ1− ξ3)+ 1

2
{(i − 1)α∗0λ+ (i + 1)α0λ

∗} − i |α0|2
)]

+ exp

{
−1

2
|λ− iα0− α0|2

}
Lm(|λ− iα0− α0|2)

×
[
exp

(
i ξ3+ 1

2
{(i + 1)α∗0λ+ (i − 1)α0λ

∗} − i |α0|2
)

+ exp

(
i (ξ1− ξ2)+ 1

2
{−(i + 1)α∗0λ− (i − 1)α0λ

∗} + i |α0|2
)]
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+ exp

{
−1

2
|λ+ iα0+ α0|2

}
Lm(|λ+ iα0+ α0|2)

×
[
exp

(
i (ξ3− ξ1)+ 1

2
{−(i + 1)α∗0λ− (i − 1)α0λ

∗} − i |α0|2
)

+ exp

(
−i ξ3+ 1

2
{(i + 1)α∗0λ+ (i − 1)α0λ

∗} + i |α0|2
)]

+ exp

{
−1

2
|λ− iα0+ α0|2

}
Lm(|λ− iα0+ α0|2)

×
[
exp

(
i (ξ3− ξ1)+ 1

2
{(i − 1)α∗0λ+ (i + 1)α0λ

∗} + i |α0|2
)

+ exp

(
−i ξ3+ 1

2
{−(i − 1)α∗0λ− (i + 1)α0λ

∗} − i |α0|2
)]}

. (3.8)

Once thes-parameterized CF is obtained, one can calculate any expectation
value for the field operators from it.

4. THE NONCLASSICAL PROPERTIES OF
FOUR-COMPONENT DFSs

We now examine these states for specific nonclassical properties. There are
essentially two possible ways for nonclassical effects to manifest themselves: One
is the occurrence of sub-Poissonian statistics (amplitude squeezing), the second is
quadrature squeezing.

4.1. Photon Number Distribution

We begin by looking at the photon number distribution for the state|94〉.
The photon number normal generating functionC(N)(λ, 1) is simply connected to
the normal (s= 1) CF by the relation (Glauber, 1963; Perina, 1984; Walls and
Milburn, 1994)

C(N)(λ, 1)= 1

πλ

∫
exp

(
−|β|

2

λ

)
C(β, 1) d2β, (4.1)

and it generates photon number distributions in the form

P(n) = (−1)n

n!

dn

dλn
C(N)(λ, 1)|λ=1. (4.2)

Also, the photon number distributionP(n) can be obtained through the relation

P(n) = |〈n | 94〉|2. (4.3)
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In Fig. 1 we illustrate the photon number distributionP(n) with α0 = 4, ξi =
0, i = 1, 2, 3. The excited photon numberm is assumed as (A)m= 1 and (B)
m= 2. These figures show the oscillations of the distribution that result from
interference between the different DFSs. It is found thatP(4n+ 1) are nonzero
for m= 1 while P(4n+ 2) are nonzero form= 2, as could be expected.

4.2. Autocorrelation Function g(2)(0)

To characterize the width of the distribution, it is convenient to use the auto-
correlation function defined by

g(2)(0) = 〈a
+2a2〉
〈a+a〉2 = 1+ 〈1n2〉 − 〈n〉

〈n〉2 , (4.4)

wheren = a+a is the photon number operator. Whenever 0≤ g(2)(0) < 1, or
whenever〈1n2〉 < 〈n〉, photon antibunching is said to exist.

The functiong(2)(0) has been classified such that the light withg(2) < 1 has
a sub-Poissonian distribution, the light with 1< g (2) < 2 has a super-Poissonian
distribution, and the light withg(2) > 2 is called super thermal light. It is well known
that the coherency is unity for coherent light (with Poissonian distribution).

One readily finds the expectation values

〈[a+k
al ]s〉 = Tr

[
ρ
{
a+

k
al
}

s

]
= ∂k

∂λk

∂ l

∂(−λ∗)l
C(λ, s) |λ=λ∗=0 (4.5)

that are necessary to examine statistical properties of the field state. In addition, it
is used to calculate the correlation functiong(2)(0).

In Fig. 2 we plot the auto-correlation functiong(2)(0) against the displacement
parameterα0, withξi = 0, i = 1, 2, 3 andm= 1, 2, 3, 5. It is apparent that the light
is sub-Poissonian light forα0 < 1 for the values ofm considered. But it becomes
Poissonian for increasing values ofα0.

4.3. Squeezing

We next look at squeezing. To do this, we introduce the two quadrature
operators

X1 = 1

2
(a+ a+) and X2 = 1

2i
(a− a+). (4.6)

These are dimensionless position and momentum operators for a harmonic os-
cillator. They satisfy [X1, X2] = i /2. The uncertainty relation in this case is
〈(1X1)2〉〈(1X2)2〉 ≥ 1/16 with the variance〈(1X j )2〉 = 〈X2

j 〉 − 〈X j 〉2. The field
is said to be squeezed if (1X j )2 < 1/4 for j = 1 or 2.
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Fig. 1. We illustrate the photon number distributionP(n) with α0 = 4, ξi = 0, i = 1, 2, 3, and
m= 1, 2 in Fig. 1(A) and (B) respectively.
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Fig. 2. Coherence functiong(2) measured on vertical axis and horizontal axis indicates
the displacement parameterα0. The number of photons of initial state (Four-component
superposition of DFSs) have the valuesm= 1 (solid curve),m= 2 (dotted curve),m= 3
(chained curve) andm= 5 (dashed curve). The remainder parameters assume the same
values in Fig. 1.

The average values of the quadrature field operators〈X1〉and〈X2〉are directly
computed. Also, variances of the quadrature field operators〈(1X1)2〉and〈(1X2)2〉
are calculated.

The squeezing is best parameterized by

qj = 〈(1X j )2〉 − 0.25

0.25
, j = 1, 2, (4.7)

such that squeezing exits for−1 < q j < 0, i.e., the squeezing condition now reads
qj < 0, and the maximum squeezing corresponds toqj = −1. Squeezing in one
quadrature is achieved at the expense of increased noise in the conjugate quadra-
ture; therefore, if one of theqj s is less than zero, the other should be greater than
zero.

The quadratures have no squeezing for these states with the same parameters
of Fig. 2.
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4.4. Phase Distribution

In the Barnett and Pegg (1986, 1989a,b) phase operator formalism, all phys-
ical quantities are calculated in (s+ 1)-dimensional space. After all calculations
are completed,s is made infinite. the Pegg–Barnett phase operator and its eigen-
states are defined in (s+ 1)-dimensional space9 spanned by the number states
|0〉, |1〉, . . . , |s〉Once the phase distribution functionP(θ ) is known, all the quan-
tum mechanical phase expectation values can be calculated with this function in
a manner similar to the classical one by integration overθ ( “Quantum phase and
phase dependent measurements,” 1993; Lynch, 1995; Perinovaet al., 1998).

The Pegg–Barnett phase distribution is given by

P(θ ) = 1

2π

∞∑
n=0

∞∑
m=0

CnC∗m exp[−i (n−m)θ ], (4.8)

or we can write it in the form

P(θ ) = 1

2π

{
1+ 2Re

∞∑
n>m

CnC∗m exp[−i (n−m)θ ]

}
(4.9)

for the state|94〉 defined in terms of number (Fock) states on the form

|94〉 =
∞∑

n=0

Cn|n〉, (4.10)

whereCn = 〈n | 94〉 is the amplitude.
In Fig. 3 we plot the phase distributionP(θ ) for |α0| = 1, with ξi = 0, i =

1, 2, 3, andm= 1 (solid curve) andm= 2 (dotted curve). For small values of
the displacement parameterα0 there is no information about the phase. This can
be atributed to the effect of the number state|m〉. The four peaks is found for the
phase distribution with increasing amplitudeα0. Calculations show that the same
four peaks are symmetrically located at±π/2, 0, and the two wings at±π , but
with large amplitude for increasedα0.

4.5. Quadrature Distributions

To calculate the quadrature component distribution for the superposition state
(i.e., the phase-parameterized field strength distribution) we write

P(x,8) = |〈x,8 | 94〉|2, (4.11)

which can be measured in balanced homodyne detection Daknaet al.(1997, 1998).
We first expand the eigenstate|x,8〉 of the quadrature component

x(8) = 1√
2

(e−i8a+ ei8a+) (4.12)
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Fig. 3. The phase distribution for the displacement parameter
α0 = 1, with m= 1 (solid curve) andm= 2 (dotted curve).
The remainder parameters assume the same values as in Fig. 1.

in the photon number basis as Daknaet al. (1997, 1998)

|x,8〉 = 1

π
1
4

exp

(
−1

2
x2

) ∞∑
j=0

ei8j√
2 j j !

Hj (x)| j 〉. (4.13)

By using Eqs. (4.10) and (4.13) we have the quadrature component distribution
(4.11) in the form

P(x,8) = 1

Aπ
1
2

exp(−x2)
∞∑

j ,l=0

exp[8(l − j )]√
2(l+ j ) j !l !

Cj C
∗
l H j (x)Hl (x). (4.14)

In Fig. 4 we plot the phase-parameterized field strength distribution (quadra-
ture component)P(x,8) with α0 = 1. The excited photon number is assumed as
(A) m= 1 and (B)m= 2. In general the figure forP(x,8) is symmetric around
x = 0 and8 = π/2. Changing the displacement parameterα0 makes a marked
difference for the distributions. Form= 1, the two-peak shape is clear for8 = 0;
for m= 2, the three-peak shape is shown forφ = 0.

For small values ofα0, it is observed that one-peak shape for the distribu-
tion for 8 = 0 or π disappears as8 increases and diverges as8 gets closer to
π/2. However, numerical calculations show that increasing the parameterα0 adds
further oscillations to the quadrature distributionP(x,8). In addition, the inter-
ference can exist at large values ofα0. The number of peaks increases with the
increase ofm.
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Fig. 4. Plots of the phase-parameterized field strength distribution (quadrature component)
P(x, 8), with α0 = 1, ξi = 0, i = 1, 2, 3 and (A)m= 1, (B) m= 2.
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4.6. Quasiprobability Functions

The computation of quasiprobability functions, given a density matrix, is often
a tedious task that involves integration over phase space variables. The exception
is theQ function, which is simply expressed as the coherent expectation value of
the field density matrix and is therefore widely adopted to describe field dynamics
in situations where the density matrix is easily computed. However, the Wigner
function has an interesting characteristic that makes it an excellent diagnostic of
quantum properties. It has negative values in some areas of the phase space for the
nonclassical field states (Hilleryet al., 1984; Lee, 1995).

Here we examine thes-parameterized quasiprobability function associated
with our states. As is well known theses-parameterized quasiprobability functions
provide a way to characterize the nonclassical nature of a quantum field. The
s-parameterized quasi-probability function is the Fourier transformation of the
s-parameterized characteristic function

F(β, s) = 1

π2

∫
C(λ, s) exp(λ∗β − λβ∗) d2λ (4.15)

where the real parametersdefines the corresponding phase space distribution. It is
well known that such a parameter is associated with the ordering of the field bosonic
operators. For example,s= 1, 0, and−1 correspond to the normal, symmetric, and
antinormal ordering, respectively. The corresponding quasiprobability functions
are theP function, the Wigner function, andQ function. The general expression of
s-parameterized characteristic function in Eq. (3.8) may be employed to facilitate
the evaluation of thes-parameterized quasiprobability function. The problems in
this scheme arise in the integration of Eq. (4.15), which is not easy to calculate, so
that we consider theQ function only, which is defined by (Glauber, 1963; Perina,
1984; Walls and Milburn, 1994)

Q(β) = 1

π
|〈β | 94〉|2 (4.16)

where|β〉 is a coherent state. More than just a theoretical curiosity,Q(β) can be
detected in homodyne experiments (Leonhardt, 1997; Leonhardt and Paul, 1995).
This distribution functionQ(β) has no singularity problems at all. It exists for all
density matrixes, is bounded, and is even greater than or equal to zero for allβ. It
has the form

Q(β) = 1

π
exp(−|β|2)

∞∑
n,m=0

CnC∗m
(β∗)n(β)m

√
n!m!

(4.17)

In Fig. 5 we have sketched theQ function with α0 = 4 andm= 1. We
show that the four sets of hollowed-pek structures of DFSs is observed. Asα0 in-
creases the four sets of peaks are seperated away from the centerx = <β = 0, y =
=β = 0.



P1: GFU

International Journal of Theoretical Physics [ijtp] PP232-343682 August 31, 2001 20:50 Style file version Nov. 19th, 1999

1732 Obada and Abd Al-Kader

Fig. 5. TheQ function for the four-component DFSs superposition states. The parameters are assumed
asα0 = 4 andm= 1. The remainder parameters assume the same values as in Fig. 1. Herex = <(β)
andy = =(β).

The Wigner function is usually expressed in an integral form, which is not
always easy to compute as shown here. Recently W¨unsche (1998) has derived an-
other form for the Wigner function, and in general, fors-parameterized quasiprob-
ability function (Cahill and Glauber, 1969; Glauber, 1963; Perina, 1984; Walls
and Milburn, 1994; W¨unsche, 1998). According to W¨unsche (1998) the Wigner
function is given by

W(β) = 2

π
exp(−2|β|2)

∞∑
n,m=0

CnC∗m(−1)n
√

n!

m!
(2β∗)m−nLm−n

n (4|β)|2) (4.18)

Fig. 6 shows plots for the Wigner function for the same parameters of Fig. 5.
It is evident that the function takes on negative values over some range ofx and
y, thus indicating the nonclassical nature of the states. Calculations show that the
function takes on more negative values for increasingm. It is seen that oscillatory
behavior of the Wigner function of four-component DFSs is observed.

5. CONCLUSIONS

We have discussed the properties and a generation scheme of four-component
DFSs. A generation scheme for these states has been presented. This scheme de-
pends on driving the vibrational motion of a trapped ion to any quantum state based
on sequence of excitations of the ion by a classical laser field. During each excita-
tion, the laser field is turned to the respective lower vibrational sideband. Therefore,
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Fig. 6. The Wigner function for the four-component DFSs superposition states. The parameters are
assumed as in Fig. 5.

the vibrational motion is prepared in the desired state of a four-component super-
position of DFSs. Based on the currently available techniques [Wineland group,
(de Matos Filho and Vogel, 1996; Gardineret al., 1997; Itanoet al., 1997; Kneer
and Law, 1998; Law and Eberly, 1996; Monroeet al., 1996; Steinbachet al., 1997;
Vogel and de Matos Filho, 1995; Winelandet al., 1998)], the scheme may be
realizable.

We have discussed the photon number distribution,s-parameterized charac-
teristic function, and quasiprobability distribution function. The three-dimensional
plots of the Wigner andQ functions for some parameters have been illustrated.
Several moments have been calculated by using the characteristic function. The
second-order correlation functiong(2)(0) has been investigated numerically.
The squeezing properties for these states have been discussed. We have analyzed
the quadrature component distributions for the superposition of four DFSs and
have presented analytical and numerical results. We have found that the basic fea-
tures of superposition of a four DFS, such as the appearance of several separated
peaks and an interference pattern, are present.

The present work was motivated by the desire to realize physically certain
specific quantum states (superposition of DFSs). It is hoped that the superposition
of DFSs will find application in quantum computer, quantum information Shor
and Preskill (2000), and quantum optics.
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